Sabtu, 17 Juli 2010

Difraksi

Difraksi

Prinsip Huygens.
Difraksi
Difraksi cahaya diterangkangkan oleh prinsip Huygens.
Difraksi pada dua celah berjarak d. Fraksi gelombang putih terjadi pada perpotongan antara garis-garis putih. Fraksi gelombang hitam terjadi pada perpotongan garis-garis berwarna hitam. Fraksi-fraksi gelombang terpisah sejauh sudut θ dan dirunut dengan urutan n.

Difraksi adalah penyebaran gelombang, contohnya cahaya, karena adanya halangan. Semakin kecil halangan, penyebaran gelombang semakin besar. Hal ini bisa diterangkan oleh prinsip Huygens. Pada animasi pada gambar sebelah kanan atas terlihat adanya pola gelap dan terang, hal itu disebabkan wavelet-wavelet baru yang terbentuk di dalam celah sempit tersebut saling berinterferensi satu sama lain.

Untuk menganalisa atau mensimulasikan pola-pola tersebut, dapat digunakan Transformasi Fourier atau disebut juga dengan Fourier Optik.

Difraksi cahaya berturut-turut dipelajari antara lain oleh:

mλ = dsinθ

dimana d adalah jarak antara dua sumber muka gelombang, θ adalah sudut yang dibentuk antara fraksi muka gelombang urutan ke-m dengan sumbu normal muka gelombang fraksi mula-mula yang mempunyai urutan maksimum m = 0.[13]. Difraksi Fresnel kemudian dikenal sebagai near-field diffraction, yaitu difraksi yang terjadi dengan nilai m relatif kecil.


Difraksi Fresnel

Geometri difraksi dengan sistem koordinat antara celah pada bidang halangan dan citra pada bidang pengamatan.

Difraksi Fresnel adalah pola gelombang pada titik (x,y,z) dengan persamaan:

 E(x,y,z)={z \over {i \lambda}} \iint{  E(x',y',0) \frac{e^{ikr}}{r^2}}dx'dy'

dimana:

 r=\sqrt{(x-x')^2+(y-y')^2+z^2} , dan
 i \, is the satuan imajiner.

[sunting] Difraksi Fraunhofer

Dalam teori difraksi skalar (en:scalar diffraction theory), Difraksi Fraunhofer adalah pola gelombang yang terjadi pada jarak jauh (en:far field) menurut persamaan integral difraksi Fresnel sebagai berikut:

U(x,y) = \frac{e^{i k z} e^{\frac{ik}{2z} (x^2  + y^2)}}{i \lambda z} \iint_{-\infty}^{\infty} \,u(x',y') e^{-i  \frac{2\pi}{\lambda z}(x' x + y' y)}dx'\,dy'. [18]

Persamaan di atas menunjukkan bahwa pola gelombang pada difraksi Fresnel yang skalar menjadi planar pada difraksi Fraunhofer akibat jauhnya bidang pengamatan dari bidang halangan.

Difraksi celah tunggal

Pendekatan numerik dari pola difraksi pada sebuah celah dengan lebar empat kali panjang gelombang planar insidennya.
Grafik dan citra dari sebuah difraksi celah tunggal

Sebuah celah panjang dengan lebar infinitesimal akan mendifraksi sinar cahaya insiden menjadi deretan gelombang circular, dan muka gelombang yang lepas dari celah tersebut akan berupa gelombang silinder dengan intensitas yang uniform.

Secara umum, pada sebuah gelombang planar kompleks yang monokromatik \Psi^\prime dengan panjang gelombang &lambda yang melewati celah tunggal dengan lebar d yang terletak pada bidang x′-y′, difraksi yang terjadi pada arah radial r dapat dihitung dengan persamaan:

\Psi = \int_{\mathrm{slit}} \frac{i}{r\lambda}  \Psi^\prime e^{-ikr}\,d\mathrm{slit}

dengan asumsi sumbu koordinaat tepat berada di tengah celah, x′ akan bernilai dari -d/2\, hingga +d/2\,, dan y′ dari 0 hingga \infty.

Jarak r dari celah berupa:

r = \sqrt{\left(x - x^\prime\right)^2 +  y^{\prime2} + z^2}
r = z \left(1 + \frac{\left(x -  x^\prime\right)^2 + y^{\prime2}}{z^2}\right)^\frac{1}{2}

Sebuah celah dengan lebar melebihi panjang gelombang akan mempunyai banyak sumber titik (en:point source) yang tersebar merata sepanjang lebar celah. Cahaya difraksi pada sudut tertentu adalah hasil interferensi dari setiap sumber titik dan jika fasa relatif dari interferensi ini bervariasi lebih dari 2π, maka akan terlihat minima dan maksima pada cahaya difraksi tersebut. Maksima dan minima adalah hasil interferensi gelombang konstruktif dan destruktif pada interferensi maksimal.

Difraksi Fresnel/difraksi jarak pendek yang terjadi pada celah dengan lebar empat kali panjang gelombang, cahaya dari sumber titik pada ujung atas celah akan berinterferensi destruktif dengan sumber titik yang berada di tengah celah. Jarak antara dua sumber titik tersebut adalah λ / 2. Deduksi persamaan dari pengamatan jarak antara tiap sumber titik destruktif adalah:

\frac{d \sin(\theta)}{2}

Minima pertama yang terjadi pada sudut &theta minimum adalah:

d\,\sin\theta_\text{min} = \lambda

Difraksi jarak jauh untuk pengamatan ini dapat dihitung berdasarkan persamaan integral difraksi Fraunhofer menjadi:

I(\theta) = I_0 \,\operatorname{sinc}^2 ( d  \sin\theta / \lambda )

dimana fungsi sinc berupa sinc(x) = sin(px)/(px) if x ? 0, and sinc(0) = 1.

Difraksi celah ganda

Single & double slit experiment.jpg
Sketsa interferensi Thomas Young pada difraksi celah ganda yang diamati pada gelombang air.[19]

Pada mekanika kuantum, eksperimen celah ganda yang dilakukan oleh Thomas Young menunjukkan sifat yang tidak terpisahkan dari cahaya sebagai gelombang dan partikel. Sebuah sumber cahaya koheren yang menyinari bidang halangan dengan dua celah akan membentuk pola interferensi gelombang berupa pita cahaya yang terang dan gelap pada bidang pengamatan, walaupun demikian, pada bidang pengamatan, cahaya ditemukan terserap sebagai partikel diskrit yang disebut foton.[20][21]

Tidak ada komentar:

Posting Komentar